
© 2016, Amazon Web Services, Inc. or its Affiliates. All rights reserved. 11/30/2016

Design Patterns for High Availability

Lessons learned building Amazon CloudFront
CTD303

Alex Smith

Head of M&E Architecture, APAC

Amazon Web Services

Harvo Jones

Sr. Software Development Engineer

Amazon CloudFront

What to Expect from the Session

• Learn about the design patterns for high availability of

Amazon CloudFront

• Learn how you can implement the patterns in your own

services or applications built on top of AWS

What is a Content Delivery

Network (CDN)?

Amazon CloudFront locations worldwide

North America South America EMEA APAC

POPs

Cities

Countries

Continents

AWS Region CloudFront Edge Location

How does Amazon CloudFront work?

AS-X

AS-Y

AS

16509

Network 1

Network 2

CloudFront POP

52.84.19.0/24

52.84.19.0/24

How does Amazon CloudFront work?

AS-X

AS-ZAS-Y Network 3

52.84.19.0/24

52.84.19.0/24

AS

16509

Network 1

Network 2

CloudFront POP

52.84.19.0/24

52.84.19.0/24

Sequence of events

Origin

CF POP

CF DNSResolver

3 HTTP

2 HTTP

1 DNS

Sequence of events

Origin

CF POP

CF DNSResolver

3 HTTP

2 HTTP

1 DNS

Sequence of events

Origin

3 HTTP

CF DNSResolver
1 DNS

CF POP

2 HTTP

How to monitor availability

How CloudFront monitors availability

1. Analysis of server-side metrics

How CloudFront monitors availability

1. Analysis of server-side metrics

2. Canaries

How CloudFront monitors availability

1. Analysis of server-side metrics

2. Canaries

3. Third-party global HTTP tests

How CloudFront monitors availability

1. Analysis of server-side metrics

2. Canaries

3. Third party global HTTP tests

Availability interruption

Segfault in CloudFront DNS server

27: int dns_get_domain_length(const char *domain) { /* <== domain is NULL */

28: const char *pos;

29: unsigned char ch;

30:

31: pos = domain;

32: while ((ch = *pos++) != 0) /* <== SEGFAULT */

33: pos += (unsigned int) ch;

34:

35: return pos – domain;

36: }

Potential causes of application failure

Origin

CF POP

CF DNSResolver

3 HTTP

2 HTTP

1 DNS

Potential causes of application failure

Origin

CF POP

CF DNSResolver

3 HTTP

2 HTTP

1 DNS

Potential causes of application failure

Origin

CF POP

CF DNSResolver

3 HTTP

2 HTTP

1 DNS

Potential causes of application failure

Origin

CF POP

CF DNSResolver

3 HTTP

2 HTTP

1 DNS

Potential causes of application failure

Origin

CF POP

CF DNSResolver

3 HTTP

2 HTTP

1 DNS

Potential causes of application failure

Origin

CF POP

CF DNSResolver

3 HTTP

2 HTTP

1 DNS

Potential causes of application failure

Origin

CF POP

CF DNSResolver

3 HTTP

2 HTTP

1 DNS

Potential causes of application failure

Origin

CF POP

CF DNSResolver

3 HTTP

2 HTTP

1 DNS

Potential causes of application failure

Origin

CF POP

CF DNSResolver

3 HTTP

2 HTTP

1 DNS

Potential causes of application failure

Origin

CF POP

CF DNSResolver

3 HTTP

2 HTTP

1 DNS

Risks to availability

Software Bugs

Surges in Volume Data Corruption

Time Bombs Dependent Services

Rapid Iteration on Capabilities

• Access Logs

• Lower Pricing

Tiers

• Management

Console

• Private Content

• RTMP Streaming

• 1-Hour TTLs

• Custom Origins

• Default Root

Object

• HTTPS Support

• Invalidations

• Price Drop, SLA

• Private

Streaming

• RTMP Access

Logs

• Singapore

• New York City

• Jacksonville

• File Size Increase

• IAM Integration

• Live Streaming

• Price Drop

• Paris

• Stockholm

• Sao Paulo

• San Jose

• South Bend

• Los Angeles

(2nd)

• New York City

(2nd)

• Geo-Blocking

• Live Streaming

Update

• Multiple Cache

Behaviors

• Multiple Origins

• QueryString

Forwarding

• Zero TTL Support

• Osaka

• Milan

• Virginia (2nd)

• Singapore (2nd)

• Frankfurt (2nd)

• London (2nd)

• Dallas (2nd)

• Cookie Based

Caching

• Custom SSL

Support

• Enhanced Logs

• HTTP 1.1

• Lower Inter-

Region Pricing

• Price Classes

• Private Content

Console Support

• Zone Apex

Support

• Chennai &

Mumbai

• Seoul

• Hayward

• Madrid

• Sydney

• Paris (2nd)

• Amsterdam (2nd)

• Tokyo (2nd)

• Hong Kong (2nd)

• New York City

(3rd)

• Virginia (3rd)

• Smooth

Streaming

• SNI Custom SSL

• HTTP to HTTPS

Redirect

• Usage Charts

• Free Tier

• EDNS Client

Subnet

• CloudTrail

• Device Detection,

Geo Targeting,

Host Header

Forwarding

• Advanced SSL

Features

• Wildcard Cookies

• Monitoring &

Alarming

• Content Charts

• Price Reduction

• Zero Rate AWS

Origin Traffic

• Directory Path as

Origin

• Viewer Charts

• Rio de Janeiro

• Taipei

• Melbourne

2008 2009 2010 2011 2012 20142013

• CloudFront

Launched with

14 POPs

• Signed Cookie

Support

• Smart TV Device

Detection

• Devices Report

• Usage Metrics

CSV Export

• Wildcard

Invalidations

• Default TTLs

• Max TTLs

• PCI DSS

Compliance

• AWS WAF

Integration

• Auto Gzip

Compression

• Modify Request

Headers

• Chicago

• Seoul (2nd)

• Enforce HTTPS

Connections

• TLSv1.1 and

TLSv1.2 to Origin

• AWS Certificate

Manager

Integration

• Cost Allocation

Tagging

• Query String

Whitelisting

• HTTP/2

• Toronto

• Montreal

• New Delhi

• Atlanta (2nd)

• Mumbai (2nd)

• Seoul (3rd)

• Frankfurt (2nd)

• Japan (4th)

• Hong Kong (3rd)

• London (4th)

• Berlin

• Minneapolis

• IPv6

• ACM Cert Import

• Regional Edge

Caches

• […]

2015 2016

Design patterns for availability

Design patterns for availability

Maximizing

availability with

Food Tasting

Flash Crowds

without scaling for

the peak

Defense in Depth

Strategies

Time Bomb Jitter

Protection

Design pattern 1: FoodTaster

Maximizing

availability with

Food Tasting

Flash Crowds

without scaling for

the peak

Defense in Depth

Strategies

Time Bomb Jitter

Protection

Risks to availability

Software Bugs

Surges in Volume Data Corruption

Time Bombs Dependent Services

FoodTaster

FoodTaster

Praegustator – DNS FoodTaster

DNS

name

server
Before Config

Daemons

Praegustator – DNS FoodTaster

DNS

name

server

DNS

name

server

Before

After

Orchestrator

1 2 3

DNS

name

server

50K

queries

Config

Daemons

Config

Daemons

$ ls

dns/ foodtaster/ landing/

$ ls foodtaster/

customer.data@ pop.data@

resolvers.data@ routing.data

$ ls dns/

customer.data pop.data

resolvers.data routing.data

Praegustator – DNS FoodTaster

Food Tasting in AWS

• Straightforward approach

• Deployments are

inexpensive, redeployments

more too

• Approaches like

CodeDeploy make life even

easier

Food Tasting in AWS

• Example - GeoIP Database

• Automatically pushed out to

every host

• Likely already have checks

• More to consider than just

invalid user configuration

Food Tasting in AWS

• Simple is better (Works for

Amazon CloudFront!)

• Assume we already use a

deployment system (e.g.,

AWS CodeDeploy)

• Complete in-situ tests

before returning complete

hooks:
BeforeInstall:

- location: Scripts/UnzipResourceBundle.sh
- location: Scripts/UnzipDataBundle.sh

AfterInstall:
- location: Scripts/RunResourceTests.sh
timeout: 180

ApplicationStart:
- location: Scripts/RunFunctionalTests.sh
timeout: 3600

ValidateService:
- location: Scripts/MonitorService.sh
timeout: 3600
runas: codedeployuse

CodeDeploy AppSec example

hooks:
BeforeInstall:

- location: Scripts/UnzipResourceBundle.sh
- location: Scripts/UnzipDataBundle.sh

AfterInstall:
- location: Scripts/RunResourceTests.sh
timeout: 180

ApplicationStart:
- location: Scripts/RunFunctionalTests.sh
timeout: 3600

ValidateService:
- location: Scripts/MonitorService.sh
timeout: 3600
runas: codedeployuse

CodeDeploy AppSec example

Food Tasting in AWS

• Acts as a quality gate

• Roll-back can be automatic

• Verification never affects

user facing traffic

Design pattern 2: Flash Crowds

Maximizing

availability with

Food Tasting

Flash Crowds

without scaling for

the peak

Defense in Depth

Strategies

Time Bomb Jitter

Protection

Risks to availability

Software Bugs

Surges in Volume Data Corruption

Time Bombs Dependent Services

Load dispersion

HTTP Flash Crowds

1x -

15x -

Static & Dynamic Strategies

dest

addr
next hopsPacket-flow config

Feedback loop

Load Dispersal

1x -

2x -

Flash Crowds within AWS

Auto Scaling works really well

But.

Approx. 15 req/s

Approx. 130k req/s

45

Seconds

Approx. 15 req/s

Approx. 130k req/s

45

Seconds

Boo!

Problem: Flash Crowds

Auto Scaling works really well

But.

Sometimes, 60s is too long.

AWS solutions

• Plan Ahead

Planning ahead

Typical examples:

• TV programs

• Live events (sports)

• Game releases

• Established traffic patterns

Planning ahead

Typical examples:

• TV programs

• Live events (sports)

• Game releases

• Established traffic patterns

AWS Solutions:

Infrastructure Event

Management

Scheduled Auto Scaling

Group

Auto Scaling Integration

Schedules and the Big Red Button

• Integration of program

scheduling and Auto

Scaling

• Program scheduling

includes expected online

audience parameters

• Big red button

Schedules and the Big Red Button

• Integration of program

scheduling and Auto

Scaling

• Program scheduling

includes expected online

audience parameters

• Big red button

AWS solutions

• Plan Ahead

• Cache Things

Cache things

Cache things

I can’t!

My website is…

Cache things

I can’t!

My website is…

DYNAMIC!

Cache things

• What’s really dynamic?

• Newspapers

• Voting sites

• Forum sites

• Updates don’t need to be

more than once a second

Cache things (even for a second)

• 10000s req/s

• Assuming every Amazon

CloudFront POP

• 10000s req/s -> ~ 10s req/s

AWS solutions

• Plan Ahead

• Cache Things

• Serve only what you have to

Serve only what you have to

Serve only what you have to

Serve only what you have to

Serve only what you have to

• AJAX Includes

Serve only what you have to

• AJAX Includes

• CloudFront Cache Keys

Design pattern 3: Defense in Depth

Maximizing

availability with

Food Tasting

Flash Crowds

without scaling for

the peak

Defense in Depth

Strategies

Time Bomb Jitter

Protection

Risks to availability

Data Corruption

Software Bugs

Surges in Volume

Time Bombs Dependent Services

Cache

Multi-impl

Sharding

Potential causes of application failure

Origin

CF POP

CF DNSResolver

3 HTTP

2 HTTP

1 DNS

Potential causes of application failure

Origin

CF POP

CF DNSResolver

3 HTTP

2 HTTP

1 DNS

Ideas to avoid crashing

• Comprehensive test coverage

• Simplify systems

Failures are going to happen.

How can we survive them when they do?

Ideas to survive crashing

• Reduce blast radius

• Reject input that previously made you crash

Ideas to survive crashing

• Reduce blast radius

• shard customers to separate processes

• Reject input that previously made you crash

Ideas to survive crashing

• Reduce blast radius

• shard customers to separate processes

• recover quickly

• Reject input that previously made you crash

Ideas to survive crashing

• Reduce blast radius

• shard customers to separate processes

• recover quickly

• multiple implementations

• Reject input that previously made you crash

DNS Multi-Impl

Should this be a fallback system?

Place it in front of every DNS name server?

DNS Multi-Impl

Should this be a fallback system?

• We want to know it always works

Place it in front of every DNS name server?

DNS Multi-Impl

Should this be a fallback system?

• We want to know it always works

Place it in front of every DNS name server?

• Would trade point of failure one for another

DNS Stripes

DNS

Impl 2

Go

DNS

Impl 1

C

Stripe 1
(34 POPs)

Stripe 2
(34 POPs)

DNS Stripes

Stripe 1
(34 POPs)

Stripe 2
(34 POPs)

Math.abs() on the lowest 32-bit signed integer, -2^31, yields a negative number.

Leading to invalid DNS configuration.

CloudFront case study

Two's complement: flip bits and add 1.

Math.abs(Integer.MIN_VALUE):

-2^31 = 10000000 00000000 00000000 00000000

bits flipped = 01111111 11111111 11111111 11111111

+1 = 10000000 00000000 00000000 00000000 <= -2^31!

CloudFront case study

Protections in place:

1. Config process crashing in a loop

2. DNS name server defensively ignores an invalid index

3. FoodTaster crashes protect King DNS name server

4. DNS stripes reduce common failure paths

AWS solution

We can use a Load Balancer

with Layer-7 awareness

So we can have multiple

backend types across a fleet

AWS solution

Enabled through microservices

Reimplementing the entire

stack multiple times is a

difficult cost / efficiency

question

Specific high-risk services are

easier

AWS solution

Example: 2FA Platform

API (HTTP) front-end to a

back-end authentication

platform

Reasonably few SLOC

If it fails – no access to

platform

AWS solution

Example: 2FA Platform

API (HTTP) front-end to a

back-end authentication

platform

Reasonably few SLOC

If it fails – no access to

platform
Auto Scaling group Auto Scaling group

Elastic Load

Balancing

Python Java

Users

Design Pattern 4: Time Bomb Jitter Protection

Maximizing

availability with

Food Tasting

Flash Crowds

without scaling for

the peak

Defense in Depth

Strategies

Time Bomb Jitter

Protection

Risks to availability

Software Bugs

Surges in Volume Data Corruption

Time Bombs Dependent Services

Jitter

Problem: homogeneous platforms

The problem

Server

74656

Server

1701

Server

74205

The problem

Configuration Updates

The problem

Binary Patches

The problem

Pictures of Cats

The problem

Pictures of Cats

Traditionally..

• Instance level monitoring

system with alerts

• Human response

• Monitor both percentage fill,

and the fill rate

High availability matters

High availability matters

Recycling old instances is

unnecessary cost

Automated cleanups may be

too slow

Human operators almost

certainly too slow

The solution

The solution

AWS solution – within an Auto Scaling group

Amazon Linux AMI has

/var/run (and /var/tmp) on root

Ubuntu AMI uses tmpfs (10%

of RAM)

Jittering root volume size is

tricky within an ASG

AWS solution – within Auto Scaling

Consciously segregate your

files to a specified directory –

on a separate volume – with

jittering

Code will follow (check

SlideShare!)

Adds <10s to system startup

What else?

Time

• SSL Certificates

• Domain name registrations

• Deployment Schedules

• ???

Wrap up:

Lessons learned

Risks to availability

Software Bugs

Surges in Volume Data Corruption

Time Bombs Dependent Services

Risks & Common Patterns

Software Bugs

Dependent Services

Multi-impl

Sharding

FoodTaster

Cache

Redundancies

Surges in Volume

Load dispersion

Data Corruption

FoodTaster

Time Bombs

Jitter

Lessons learned

Maximizing

availability with

Food Tasting

Flash Crowds

without scaling for

the peak

Defense in Depth

Strategies

Time Bomb Jitter

Protection

Don’t rely on

validation in your

main application

Auto Scaling

Integration;

Caching; Selective

Serving

Homogeneity can

hurt

Implementation

striping can save

you

Lessons learned

Maximizing

availability with

Food Tasting

Flash Crowds

without scaling for

the peak

Defense in Depth

Strategies

Time Bomb Jitter

Protection

Don’t rely on

validation in your

main application

Auto Scaling

Integration;

Caching;

Selective Serving

Homogeneity can

hurt

Implementation

striping can save

you

Lessons learned

Maximizing

availability with

Food Tasting

Flash Crowds

without scaling for

the peak

Defense in Depth

Strategies

Time Bomb Jitter

Protection

Don’t rely on

validation in your

main application

Auto Scaling

Integration;

Caching; Selective

Serving

Homogeneity can

hurt

Implementation

striping can save

you

Lessons learned

Maximizing

availability with

Food Tasting

Flash Crowds

without scaling for

the peak

Defense in Depth

Strategies

Time Bomb Jitter

Protection

Don’t rely on

validation in your

main application

Auto Scaling

Integration;

Caching; Selective

Serving

Homogeneity can

hurt

Implementation

striping can save

you

Thank you!

Remember to complete

your evaluations!

Related Sessions

ARC309

Moving Mission Critical Apps from One Region to Multi-

Region active/active

ARC204

From Resilience to Ubiquity - #NetflixEverywhere

Global Architecture

